全讯网-皇冠网_百家乐网_全讯网娱乐 (中国)·官方网站

科學研究

打造高水平科技創新平臺和一流科研團隊!

MENU

學術活動

“數通古今,學貫中外”學術講座第六十五期預告【王鳳雨教授】

供稿: 曹鵬(數學與統計學院) 編輯: 數學學院 高冰 時間:2014-04-14

時間:4月15日(周二)下午3:30至4:30

地點:研究生樓103

報告人:王鳳雨教授:北京師范大學教授

Title: Integration by Parts Formula and Shift Harnack Inequality for Stochastic Equations

Abstract: A new coupling argument is introduced to establish Driver's integration by parts formulaand shift Harnack inequality. Unlike known coupling methods where two marginal processes withdifferent starting points are constructed to move together as soon as possible, for the new-type coupling the two marginal processes start from the same point but their difference is aimed to reach a fixed quantity at a given time. Besides the integration by parts formula, the new coupling method is also efficient to imply the shift Harnack inequality. Differently from known Harnack inequalities where the values of a reference function at different points are compared, in the shift Harnack inequality the reference function, rather than the initial point, is shifted. A number of applications of the integration by parts and shift Harnack inequality are presented. The general results are illustrated by some concrete models including the stochastic Hamiltonian system where the associated diffusion process can be highly degenerate, delayed SDEs, and semi-linear SPDEs.
 

百家乐真人斗地主| 水果机上分器| 十六浦百家乐的玩法技巧和规则| 金龍娱乐城| 百家乐玩法既规则| 偃师市| 合肥太阳城在哪| 太阳城百家乐币| 玩百家乐官网凤凰娱乐城| 最可信百家乐娱乐城| 24山是什么意思| 百家乐官网打水策略| 百家乐玩法有技巧| 什邡市| 百家乐建材| 三公百家乐官网在线哪里可以| 如东县| 百家乐分析软件骗人| 网上百家乐官网乐代理| 百家乐官| 必胜娱乐城| 五张百家乐官网的玩法技巧和规则 | 华硕百家乐官网的玩法技巧和规则 | 元游棋牌游戏大厅下载| 至尊百家乐年代| 网上百家乐官网博彩正网| 正规棋牌游戏| 百家乐小钱赢钱| 百家乐官网图形的秘密破解| 百家乐官网输钱的原因| 百家乐官网娱乐分析软| 网络真人赌博| 大发888真钱游戏下载到桌面| 乐享百家乐的玩法技巧和规则 | 澳门百家乐赌场文| 做生意招财的东西| 澳门百家乐官网官网站| 澳门百家乐官网21点| 大赢家即时比分| 云鼎娱乐城| 视频棋牌游戏大厅|