全讯网-皇冠网_百家乐网_全讯网娱乐 (中国)·官方网站

科學研究

打造高水平科技創新平臺和一流科研團隊!

MENU

學術活動

9月2日物理學院“博約學術論壇”系列報告第39期

時間:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)
百家乐官网款| 威尼斯人娱乐城存取款| 赌场百家乐代理| 百家乐官网怎么玩啊| 百家乐轮盘桌| 大赢家百家乐官网66| 东方太阳城二手房| 做生意大门方位风水| 海南省| 下载百家乐的玩法技巧和规则| 百家乐官网娱乐网网77scs| 中原百家乐的玩法技巧和规则| 澳门百家乐官网必赢技巧| 百家乐翻天下载| 百家乐官网投注程式| 六合彩综合资料| 盐城百家乐的玩法技巧和规则 | 香港百家乐官网的玩法技巧和规则| 网上百家乐骗人吗| 威尼斯人娱乐场xpjgw5xsjgw| 乐宝百家乐娱乐城| 百家乐官网免费改单| 百家乐官网那个平台好| 大发888官方爱好| 百家乐作弊工具| 巨星百家乐官网的玩法技巧和规则 | 真人百家乐网西陆| 真人百家乐官网斗地主| 辽宁省| 水果机单机版| 百家乐现金游戏注册送彩金| 四方百家乐官网的玩法技巧和规则 | 百家乐官网线上| 百家乐官网里面的奥妙| 岳西县| 大发888是什么游戏| 百家乐大赢家小说| 百家乐官网博弈指| 百家乐官网板路| 百家乐官网透视牌靴哪里有| 无锡百家乐官网的玩法技巧和规则|