全讯网-皇冠网_百家乐网_全讯网娱乐 (中国)·官方网站

今天是
今日新發(fā)布通知公告1條 | 上傳規(guī)范

數(shù)學(xué)與統(tǒng)計(jì)學(xué)院"21世紀(jì)學(xué)科前沿"系列學(xué)術(shù)報(bào)告預(yù)告

Second-order Least Squares Method for High-dimensional Variable Selection

作者: ?? 來源:數(shù)學(xué)學(xué)院?? 發(fā)布日期:2015-06-01
報(bào)告題目:Second-order Least Squares Method for High-dimensional Variable Selection
報(bào)告時(shí)間:2015年6月2日下午3:00-4:00
報(bào)告地點(diǎn):良鄉(xiāng)1-208
報(bào)告人:Professor Liqun Wang, Department of Statistics, University of Manitoba, Canada
摘要:High-dimensional variable selection problems arise in many scientific fields, including genome and health science, economics and finance, astronomy and physics, signal processing and imaging. In statistics, various regularization methods have been studied based on either likelihood or least squares principles. In this talk, I will propose a regularized second order least squares method for variable selection in linear or nonlinear regression models. This method is based the first two conditional moments of the response variable given on the predictor variables. It is asymptotically more efficient than the ordinary least squares method when the regression error has nonzero third moment. Consequently the new method is more robust against asymmetric error distributions. I will demonstrate the effectiveness of this method through Monte Carlo simulation studies. A real data application will be presented to further illustrate the method.
百家乐官网2号干扰| 合作市| 百家乐下载免费软件| 阴宅24山坟前放水口| 百家乐乐赌| 百家乐官网网上赌博网| 一共33楼24楼风水怎么说| 博彩老头排列三| 做生意招财小窍门| 百家乐手机壳| 网上的百家乐官网是假的吗| 百家乐官网翻天下载| 大发888在线娱乐下载| 百家乐官网赌博论坛在线| 威尼斯人娱乐棋牌平台| 澳门百家乐官网怎么看小路| 百家乐游戏大| 百家乐官网娱乐网网77scs| 成人百家乐的玩法技巧和规则| 百家乐官网1元投注| 大发888注册送58| 百家乐公式球打法| 豪门国际娱乐城| 百家乐技巧真人荷官网| 重庆市| 新濠百家乐现金网| 大发888娱乐场开户注册| 顶级赌场是真的吗| 星港城百家乐官网娱乐城| 太阳城洋伞| 百家乐官网电子| 百家乐官网规则技法| 百家乐款| 百家乐官网好不好| 静乐县| 大发888下载并安装| 百家乐娱乐注册就送| 百家乐官网打印机破解| 联兴棋牌| 大发888娱乐场存款| 百家乐官网桌码合|