全讯网-皇冠网_百家乐网_全讯网娱乐 (中国)·官方网站

今天是
今日新發布通知公告0條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

齐博线上娱乐| 总统娱乐城| 真人百家乐官网输钱惨了| 金宝博百家乐官网现金| 百家乐官网投注方法多不多| 南宁百家乐官网的玩法技巧和规则| 百家乐是不是有技巧| 大发888线上| 百家乐官网现场投注平台| 百家乐免费路单| 威尼斯人娱乐城最新网址| 金龍百家乐官网的玩法技巧和规则 | 有百家乐的棋牌游戏| 商城县| 百家乐官网电投网址| 罗盘24山作用| 真人游戏排行榜| 百家乐官网投注技巧| 澳门百家乐博彩网| 棋牌赚钱| 网上的百家乐官网是假的吗| 百家乐的规则博彩正网| 威尼斯人娱乐城百家乐赌博 | 大哥大百家乐官网的玩法技巧和规则 | 伟易博百家乐官网娱乐城 | 若羌县| 功夫百家乐的玩法技巧和规则 | 澳盈88娱乐城| 百家乐官网信誉博彩公司| 姚记百家乐的玩法技巧和规则| 百家乐官网分析下载| 喜达百家乐现金网| 保单百家乐官网游戏机| 百家乐声音不印网| e世博娱乐| 百家乐视频网络游戏| 澳门百家乐官网真人娱乐城| 皇冠现金网哪个最好| 百家乐官网小路规则| 网上真钱赌博| 大发888娱乐场网址|