全讯网-皇冠网_百家乐网_全讯网娱乐 (中国)·官方网站

今天是
今日新發(fā)布通知公告0條 | 上傳規(guī)范

“數(shù)通古今,學貫中外”系列講座【Renming-Song】

作者:高冰 ?? 來源:數(shù)學學院?? 發(fā)布日期:2012-07-20

主講人:Renming-Song
講座題目:Harnack principle for symmetric stable processes and subordinate Brownian motion
時  間:2012年7月23,24,25, 27日上午10:40~12:00, 及7月30, 31日上午9:00~11:00.
地  點:研究生樓209A
主講人介紹
  Renming-Song received the B.S. degree in mathematics in 1983 and M.S. degree in Mathemtics in 1986, both from Hebei University, Baodin, China. He received his Ph.D. degree in Mathematics from the University of Florida, Gainesville in 1993. He was a visiting assistant professor at Northwestern University and the University of Michigan before moving to the University of Illinois in 1997, where he is a Professor of Mathematics since 2009.
  His research interests include stochastic analysis, Markov processes, potential theory and financial mathematics. Renming Song has published more than 77 research papers, in top mathematical Journals.
主要內(nèi)容:Recently many breakthroughs have been made in the potential theory of symmetric stable processes and subordinate Brownian motions. In all these recent developments, the boundary Harnack principle played an essential role. In this series of lectures I plan to give a self-contained account of the boundary Harnack principle for symmetric stable processes. Then I will extend the argument to obtain the boundary Harnack principle
for a large class of subordinate Brownian motions.

Here are some references:

[1]. K. Bogdan. The boundary Harnack principle for the fractional Laplacian. Studia Math. (1997), 43--80.
[2]. P. Kim, R. Song and Z. Vondracek. Boundary Harnack Principle for Subordinate Brownian Motions. Stoch. Proc. Appl. 119 (2009), 1601--1631.
[3]. P. Kim, R. Song and Z. Vondracek. Potential theory of subordinate Brownian motions revisited. To appear in Stochastic Analysis and Applications to Finance--Essays in Honour of Jia-an Yan, edited by Tusheng Zhang and Xunyu Zhou. World Scientific,2012.
[4]. R. Song. Potential theory of subordinate Brownian motions.
http://open.nims.re.kr/download/probability/song.pdf
[5]. R. Song and J.-M. Wu. Boundary Harnack inequality for symmetric stable processes. J. of Funct. Anal. 168 (1999),403-427.


专业百家乐软件| 永利高a2| 博士百家乐现金网| 网上百家乐注册彩金| 金海岸百家乐的玩法技巧和规则| 网上百家| 百家乐官网道具扫描| 百家乐视频游戏中心| 大发888真钱注册| 百家乐庄闲必胜打| 太阳城百家乐官网筹码租| 百家乐桌布动物| 百家乐官网和局投注法| 百家乐全讯网娱乐城| 永利百家乐官网游戏| 百家乐官网怎么玩| 棋牌游戏注册送6元| 金百家乐官网的玩法技巧和规则 | 金花百家乐官网娱乐城| 大发888娱乐城下载| 百家乐偷吗| 菲彩娱乐| 查找百家乐官网群| 绥芬河市| 澳门百家乐有没有假| 南城县| 大发888boaicai| 大发888官网下载 官方| 合乐8百家乐官网娱乐城| 大发888下载 34| 打百家乐最好办法| 百家乐游戏出售| 钱隆百家乐官网大师| 澳门顶级赌场手机在线登陆| 做生意门面朝向风水| 洮南市| 租nongcun房看风水做生意的| 百家乐官网越长的路| 百家乐官网试玩平台| 在线百家乐作| 百家乐教父方法|