全讯网-皇冠网_百家乐网_全讯网娱乐 (中国)·官方网站

今天是
今日新發布通知公告1條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

來源:   發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

王子百家乐的玩法技巧和规则| 狼2老虎机清零密码| 葡京百家乐注码| 大发888注册送58元| 百家乐官网庄闲局部失| 大发888什么赢钱快| 澳门百家乐官网真人娱乐城| 全讯网bbin888.com| 云鼎百家乐官网代理| 百家乐官网怎么看单| 大发888娱乐城范本| 破解百家乐官网打路单| 广发百家乐的玩法技巧和规则| 如何玩百家乐官网的玩法技巧和规则 | 360棋牌游戏大厅| 海尔百家乐官网的玩法技巧和规则 | 威尼斯人娱乐城上不了| 做生意的门的方向| 百家乐官网平台要多少钱| 博九开户| 涂山百家乐的玩法技巧和规则| 网上百家乐危险| 半圆百家乐官网桌子| 富二代百家乐的玩法技巧和规则 | 百家乐真人现场| 百家乐官网法则| 南宁百家乐官网赌机| 资兴市| 金龙娱乐城开户送彩金| 威尼斯人娱乐城最新地址| 现金百家乐赢钱| 杨公风水24山分金| 百家乐官网斗地主| 百家乐官网出千工具价格| 真人百家乐官网在线玩| 大都会百家乐的玩法技巧和规则| 百家乐赢钱秘密| 百家乐官网注册开户送彩金| 临湘市| 百家乐官网筹码订做| 网上百家乐危险|