全讯网-皇冠网_百家乐网_全讯网娱乐 (中国)·官方网站

今天是
今日新發布通知公告1條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

來源:   發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

博狗百家乐官网现场| 全讯网报码| 百家乐官网信誉博彩公司| 免费百家乐官网追号工具| 百家乐图形的秘密破解| 网上百家乐官网看牌器| 百家乐必学技巧| 千亿娱乐网| 大众百家乐官网的玩法技巧和规则| 百家乐官网网络赌博地址| 百家乐国际娱乐城| 澳门百家乐网上赌博| 易胜博娱乐| 百家乐官网平预测软件| 大发888官网客服| 百家乐官网这样赢保单分析 | 百家乐官网鸿泰棋牌| 太阳城百家乐杀祖玛| 球讯网| 现金百家乐赌法| 百家乐官网在线手机玩| 百家乐客户端下载| 内黄县| 扑克王百家乐的玩法技巧和规则| 常熟市| 百家乐博弈指| 百家乐官网无损打法| 最新棋牌游戏| 百家乐之三姐妹赌博机| 百家乐官网长龙如何判断| 大发888英皇国际| 百家乐投注办法| 平泉县| 金樽百家乐官网的玩法技巧和规则 | 百家乐在发牌技巧| 百家乐官网娱乐城新闻| 奇迹百家乐的玩法技巧和规则 | 百家乐官网平六亿财富网| 网站百家乐博彩| 百家乐官网机器手怎么做弊| 百家乐EA平台|